На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
60 °
Объяснение:
1. Вершины прямоугольника А, В, С, Д . ВН перпендикуляр к диагонали ВД. О - точка
пересечения диагоналей ВД и АС.
2. По условию задачи ∠СВН : ∠АВН = 6 : 3. То есть, ∠СВН = 2∠АВН .
3. ∠СВН + ∠АВН = 90°. Заменяем в этом выражении ∠СВН на 2∠АВН:
∠АВН + 2∠АВН = 90°.
∠АВН = 30°.
4. ∠ВАН = 180° - ∠АВН - ∠АНВ = 180° - 30° - 90° = 60°.
5. Треугольник АВО - равнобедренный. Следовательно, ∠АВО = ∠ВАО = 60°.
6. Вычисляем острый угол между диагоналями ∠АОВ:
∠АОВ = 180° - (∠АВО + ∠ВАО) = 180° - 120° = 60°.
ответ: острый угол между диагоналями ∠АОВ = 60°.