Если нужны площади всех основных фигур, то вот Вам мой список: Площадь треугольника: 1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне. 2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними. 3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности. 4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности. 5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня 6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма: 1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне 2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба: 1)S = absina - смотри выше. 2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата: S = a^2. a - сторона квадрата
Площадь прямоугольника: S = ab. a,b - стороны прямоугольника
Площадь трапеции: S = (a+b)/2 * h - a,b - основания трапеции. h - высота Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2
Осевое сечение - трапеция площадь трапеции равна полусумме оснований на высоту,основания трапеции - диаметры(2*r). S=(2r+2R)/2 * h 168=42*h h = 4 Площадь боковой поверхности равна S=π(r+R)*l Из вершины угла верхнего основания опускаете перпендикуляр к нижнему основанию - это высота конуса.Теперь рассмотрим прямоугольный треугольник.высота конуса=катет треугольник равен в 4,а другой катет равен: из бОльшего диаметра вычитаем меньший диаметр и делим пополам выходит (68-16)/2=26.Теперь по теореме Пифагора найдем образующую=гипотинузу l=√(h^2-((2R-2r)/2)^2=√h^2-(R-r)^2= 2√173/ образующая равна L = √(h²+(R-r)²) =2√173 S=π(8+34)*2√173=84√173*π
Площадь треугольника:
1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне.
2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними.
3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности.
4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности.
5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня
6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма:
1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне
2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба:
1)S = absina - смотри выше.
2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата:
S = a^2. a - сторона квадрата
Площадь прямоугольника:
S = ab. a,b - стороны прямоугольника
Площадь трапеции:
S = (a+b)/2 * h - a,b - основания трапеции. h - высота
Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2