1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.