Одна из диагоналей параллелограмма, длина которого 4 корень из 6, составляет с основанием угол 60, а вторая диагональ составляет с тем же основанием угол 45, то длина второй диагонали равна.
Проведем диагональ. Диагональ является общей стороной для отмеченных треугольников, а их углы при этой общей стороне соответственно равны друг другу так как накрестлежащие при параллельных прямых, следовательно эти треугольники равны. Из равенства треугольников следует равенство соответственых сторон, одни из которых наши параллельные стороны ЧТД
Рассмотрим цилиндр сверху и увидим круг, где осевое сечение - это диаметр круга, а другое параллельно ему. Рассмотрим треугольник, образованный этим сечением (обозначим длину за а) и двумя радиусами. Мы знаем также его высоту - половина радиуса. По теореме Пифагора: r² = (a/2)² + (r/2)² = a²/4 + r²/4 a²/4 = 3r²/4 a² = 3r² a = √3r Теперь возвращаемся к третьему измерению, рассматриваем весь цилиндр. Пусть его высота h, тогда площадь этого сечения будет: S = ah = √3rh А площадь осевого сечения (назовём S0): S0 = 2r*h Значит rh = S/√3 И S0 = 2*S/√3
сделаем построение по условию
диагональ 1 =4 √6
диагональ 2 = Х
одну и ту же величину (ВЫСОТу Н) можно найти двумя
H =X sin45
H = 4√6 *sin60
приравняем по Н
X sin45 = 4√6 *sin60
Х = 4√6 *sin60 / sin45 =4√6 *√3/2 / √2/2 = 12
ответ длина второй диагонали равна. 12