Биссектриса MK угла CMD делит угол на две равные части. Т.к. сумма смежных углов AMD и CMD равна 180*, то 180*-48*=132*. Угол CMD равен 132 градуса. Угол KMC равен 132*:2=66*. Угол AME(точка добавилась с другой стороны биссектрисы, чтобы было, как назвать угол) и угол KMC вертикальные, а значит угол AME=66*. Т.к. MK||AD, накрест лежащие углы DME и MDF(Точка F образовалась на продолжении стороны AD со стороны точки D) равны, вследствие пересечения двух параллельных прямых секущей MD. Угол DME=MDF= 48*+66*=114*. Угол MDF смежный с углом D, а значит угол D=180*-114*=66*. А ещё угол DME и угол D соответственные а значит они равны. DME=D=66*
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Площадь основания=12*12=144.
высота боковой грани=корень100-36=8
Площадь боковой поверхн.=4*(1/2*12*8)=192.
Площадь вся=144+192=336.