Через две точки можно провести прямую, если эти точки лежат в одной плоскости. Здесь А и Д лежат в одной плоскости, поэтому через них можно провести прямую. Соединим их. А и М тоже лежат в одной плоскости, соединим их. Плоскость (BCC₁) параллельна плоскости (ADD₁),поэтому через М проводим прямую параллельно DD1. Она пересеклась с СС1. Обозначим точку их пересечения К. Точки К и D₁ лежат в одной плоскости, ⇒ через них можно провести прямую, лежащую в этой плоскости. Получено нужное сечение АМКD₁. Для того, чтобы вычислить периметр сечения, нужно найти длину всех стороны четырехугольника АМКD₁ АD₁ - диагональ квадрата со стороной 4 АD₁=4√2 МК параллельна ВС₁=AD₁ и является средней линией треугольника ВСС₁. Она равна половине ВС₁ МК=2√2 ⊿АВМ=⊿КС₁D₁ по двум сторонам и углу между ними. АМ=КD₁ Из треугольника АВМ, где АВ=4, ВА=2 АМ=√(АВ²+ВМ²)=√(16+4)=2√5 Периметр АМКD₁ Р=2*2√5+4√2+2√2Р=6√2+4√5 (единиц длины)
r=1/2*R=1/2*6=3 вот так)