Так как в △ABC стороны AC и BC равны, то этот треугольник равнобедренный, тогда сторона AB является основанием равнобедренного треугольника, а ∠A и ∠B — углы при основании равнобедренного треугольника. Тогда:
∠A = ∠B.
Так как ∠A и ∠B равны, то синусы этих углов будут также равны.
В △AHB ∠AHB = 90° (так как AH — высота), тогда сторона AB, лежащая напротив прямого угла, является гипотенузой △AHB, а стороны AH и BH —катетами.
В прямоугольном треугольнике синусом острого угла называется отношение катета, который лежит напротив этого угла, к гипотенузе. Напротив ∠B лежит катет AH, тогда:
sin∠B = AH / AB.
По условию AH = 3, а AB = 10, тогда:
sin∠B = 3/10 = 0, 3.
Так как синус ∠B равен синусу ∠A (он же ∠BAC), то:
sin∠A = 0, 3.
ответ: sin∠A = 0, 3.
Сторона ВС=5+11=16 см.так как сторона ВС разбивается биссектрисой АМ на отрезки 5 см и 11 см.Тогда сторона АD=16 см,как противоположные стороны прямоугольника.
Биссектриса разбивает угол А на равные углы ВАМ и DАМ,равные по 45 градусов,так как все улы у прямоугольника прямые.
В треугольнике АВМ угол ВМА=180-(90+45)=45 градусов,так как сумма углов в треугольнике равна 180 градусов,а угол АВМ=90 градусов,угол ВАМ=45 градусов.Тогда треугольник АВМ-равнобедренный(угол ВАМ=углу ВМА=45 градусов).
тогда АВ=ВМ как боковые стороны равнобедренного треугольника.
Тогда АВ=СD=5 см как противоположные стороны прямоугольника
Тогда периметр прямоугольника ABCD =2*16+2*5=32+10=42 см
ответ:42 см