1.
Обозначим радиус меньшей окружности буквой r, а большей - R.
По условиям задачи r/R=2/7.
Ширина полосы будет равна R-r и по условиям равна 24 (см), значит: R-r=24 (см), то есть R=r+24 (см).
С учетом полученного результата имеем:
r/r+24=2/7,
7r=2*(r+24),
7r=2r+48,
5r=48,
r=9,6 (см).
Так как R=r+24, то R=9,6+24=33,6(см).
Таким образом диаметр одной окружности будет равен D=2R=33,6*2=67,2(cм), а диаметр второй окружности будет равен
d=2r=9,6*2=19,2 (см).
2.
Расстояние между центрами окружностей - отрезок ОА делится точкой ка в отношении 2:3. Значит, отрезок ОА разделен на 2+3=5 равных частей. Причем ОК содержит 2 части, а КА - 3 части.
10 см : 5 = 2 см - длина каждой из равны частей.
Тогда ОК=2*2 = 4 см. Диаметр меньшей окружности равен 2*4=8 см.
АК = 3*2 = 6 см. Диаметр большей окружности равен 2*6 = 12 см.
Наверное вот так ...
d = H / tg 30° = 2√6 / (1/√3) = 2√18 = 6√2.
Сторона а основания равна: a = d*cos 45° = 6√2*(√2/2) = 6.
So =a² = 6² = 36.
Sбок = РН = 4*6*2√6 = 48√6 кв.ед.
2) Если площадь основания равна 16 м², то сторона а основания равна:
а = √16 = 4 м.
Высота Н пирамиды равна:
Н = (а/2)*tg 60° = 2√3 м.
Находим апофему А:
А = (а/2) / cos 60° = 2/(1/2) = 4 м.
Периметр Р основания равен: Р = 4а = 4*4 = 16 м.
Sбок = (1/2)РА = (1/2)16*4 = 32 м².