А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение:
А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение:
Начнем с того, что ребра МВ МС МА равны ( т.к. М1С=М1А=М1В - радиусы описанной окружности и высота ММ1 для них общая и составляет с ними угол в 90). Значит достаточно найти только одно ребро.
Высота в р/б треуг АВС ВК - она же и биссектриса и медиана. т. М - точка пересечения медиан, тогда ВМ1=2/3*ВК, а М1К=ВК/3.
Угол КВС=углу КВА (ВК - биссектр), тогда угол КВС=углу КВА=альфа/2=0.5А
Поэтому cos 0.5А=ВК/ВС, тогда ВК=cos 0.5А*ВС=а*cos 0.5А, тогда
М1К=(а*cos 0.5А)/3
M1B=2*(а*cos 0.5А)/3
найдем МК по т. Пиф:
найдем МB по т. Пиф:
Т.к. МВ=МС, то МТ - высота, медиана и биссектриса, тогда
ТС=ТВ=а/2
Найдем МТ по т Пиф: