М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastya19831507
nastya19831507
26.07.2022 23:33 •  Геометрия

Братя Українці до ть з Геометриєш а я вам ів


Братя Українці до ть з Геометриєш а я вам ів

👇
Ответ:

1 дурыс это правдо верный ответ

4,6(83 оценок)
Открыть все ответы
Ответ:

Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.

Объяснение:

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.

Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.

Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов

n

=(A, B) и

M0M

=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в

Справочник

Прямая, плоскость

Статью подготовили специалисты образовательного сервиса Zaochnik.

Как работает сервис

Наши социальные сети

Общее уравнение прямой: описание, примеры, решение задач

Содержание:

Общее уравнение прямой: основные сведения

Неполное уравнение общей прямой

Общее уравнение прямой, проходящей через заданную точку плоскости

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Составление общего уравнения прямой

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат Oxy.

Теорема 1

Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.

Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.

Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов

n

=(A, B) и

M0M

=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора

n

=(A, B). Можем предположить, что это не так, но тогда бы векторы

n

=(A, B) и

M0M

=(x-x0, y-y0) не являлись бы перпендикулярными, и равенство A(x-x0)+B(y-y0)=0 не было бы верным.

Общее уравнение прямой: основные сведения

Следовательно, уравнение A(x-x0)+B(y-y0)=0 определяет прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение

A

x

+

B

y

+

C

=

0

определяет ту же прямую. Так мы доказали первую часть теоремы.

Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени

A

x

+

B

y

+

C

=

0

.

Зададим в прямоугольной системе координат на плоскости прямую

a

; точку

M

0

(

x

0

,

y

0

)

, через которую проходит эта прямая, а также нормальный вектор этой прямой

n

=

(

A

,

B

)

.

4,4(83 оценок)
Ответ:
lmaxluk099
lmaxluk099
26.07.2022

1. 108 см²

2. АВ=ВС=10+2√5; АС=4√5 (см рисунок)

Объяснение:

1.

У параллелограмма попарные стороны равны⇒АВ=СД=9 см, а АД=ВС

Биссектриса угла параллелограмма отсекает от него р/б Δ⇒

Биссектриса ∠В отсекла р/б Δ АВК ⇒АК=АВ=9 см

Биссектриса ∠С отсекла р/б Δ СДК ⇒КД=СД=9 см

АД=9+9=18 см

КH является высотой параллелограмма, т к точка К лежит на ВС. Расстоянием между параллельными прямыми называется расстояние от какой-нибудь точки одной прямой до другой прямой.

Можем посчитать площадь:

S=АД*КН=18*6=108 см²

2.

Обозначим Δ буквами АВС, где ∠В=36° (см рисунок) и АВ=ВС, и найдем два остальных угла р/б ΔАВС=(180-36)\2=72°

Биссектриса поделила ∠А пополам ⇒∠ВАД=∠ДАС=36°. Найдем ∠АДС=180-36-72=72°

Мы видим, что Δ САД подобен ΔАВС (по трем углам).

Выразим соотношение сторон: АС/ДС=ВС/АД

Возьмем СД за х, тогда АВ=ВС=√80+х:

√80/х=(√80+х)/√80⇒х(√80+х)=√80*√80=

х²+√х-80=0 Решим уравнение:

Дискриминант равен: (√80)²-4*1*(-80)=80+320=400=20²

Найдем корни:

***√80=√16*√5=4√5

X=(-√80+√20²)/2*1=(-√80+20)/2=(-4√5+20)/2=2(-2√5+10)/2=-2√5+10=10-2√5 - это ДС

Посчитаем все стороны ΔАВС:

АВ=ВС=4√5+(10-2√5)=4√5+10-2√5=10+2√5

АС=√80=4√5


1)Биссектрисы углов В и С параллелограмма ABCD пересекаются в точке К, лежащей на стороне AD. Найдит
4,8(74 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ