Объяснение:В треугольнике ABD ∠DAB + ∠ABD = 180 - ∠D (по сумме внутренних углов треугольника). Так как внешний угол является смежным с внутренним углом треугольника АВС, а внутренний угол треугольника ADB при этой же вершине равен половине внешнего угла треугольника АВС как вертикальный =>
∠DAB = (180° -∠A)/2. ∠ABD = (180° -∠B)/2. Тогда
(180° -∠A)/2 + (180° -∠B)/2 = 110° =>
∠A + ∠B = 360° - 220° = 140°.
В треугольнике АВС ∠АСВ = 180° - (∠A + ∠B) = 40° (по сумме внутренних углов треугольника).
78°; 102°
Объяснение:
Тема: "Признаки параллельности прямых".
При пересечении двух параллельных. Образуются следующие углы.
-Вертикальные равны между собой.
-Соответствующие равны между собой.
-Внутренние и внешние накрест лежащие равны между собой.
-Смежные углы их сумма равна 180°( именно эти углы мы используем, потому что остальные равные между собой.)
Пусть градусная мера одного угла будет х, тогда градусная мера второго угла будет (х-24).
Составляем уравнение:
х+(х-24)=180
2х-24=180
2х=180+24
2х=204
х=204/2
х=102° градусная мера одного угла.
Градусная мера второго угла равна (х-24), подставляем значение х.
102-24=78° градусная мера второго угла.
Остальные углы равны этим двум.
ответ: 78°;102°
Площадь параллелограмма равна с одной стороны S=1/2*d₁*d₂*sinα, с другой стороны
S=ab*sinα=5√2*7√2*sinα=70*sinα
70*sinα=1/2*d₁*d₂*sinα, d₁*d₂=140
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон
d₁²+d₂²=2(a²+b²), d₁²+d₂²=2(50+98), d₁²+d₂²=296
Получили два уравнения, объединяем их в систему. Из первого уравнения d₂=140/d₁. Умножим на 2 первое ур-ие: 2d₁d₂=280. Прибавим ко второму ур-ию:
d₁²+2d₁d₂+d₂²=576, (d₁+d₂)²=576, d₁+d₂=24