Итак, будем доказывать тот факт, что треугольники равны. Пусть будет так, что A1B2C2- треугольник, равный треугольнику ABC, с вершиной B2 на луче A1B1 и вершиной C2 в той же полуплоскости как бы относительно прямой A1B1, где будет у нас находиться вершина C1.
Так как A1B2=A1B1, то вершина B2 совпадает с вершиной B1, это очевидно. Так как угол B1A1C2= углу B1A1C1 и тогда угол A1B1C2 = углу A1B1C1, то луч A1C2 будет совпадать с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина C2 совпадает с вершиной C1...
Итак, треугольник A1B1C1 совпадает с треугольником A1B2C2, а как раз и значит,что он равен треугольнику ABC.
Теорема доказана. Вот в прикреплённом файле есть мои чертежи по доказательству:
Параллелепипед (греч. parallelepípedon, от parállelos — параллельный и epípedon — плоскость) , шестигранник, противоположные грани которого попарно параллельны. П. имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы. П. называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани — прямоугольники) ; прямоугольным, если этот П. прямой и основанием служит прямоугольник (следовательно, 6 граней — прямоугольники) ; П. , все грани которого квадраты, называется кубом. Объём П. равен произведению площади его основания на высоту.
Треугольник АВС - равнобедренный.
(угол)А=(угол)В, sinA=sinB(соответственно)
АК=КВ так как СК - высота, медиана, биссектриса(равнобедренный треугольник). Из треугольника АСК имеем:
АК=АС*cosА. CosА=sqrt(1-sin^2А) или SinA= sqrt(1-0,16)=sqrt(0,84)=0.2 корень (21)
Значит,
АК=25sqrt(21)*0,2sqrt(21) = 5*21 = 105, тогда АВ= 210;
Треугольник АВН - прямоугольный, значит АН=АВ*cos В или
АН = 210*0,4 = 21*4 = 84
ответ: Высота(АН)=84.