ответ: 26
Объяснение:
Пусть r -- радиус вписанной окружности в ΔBCP, а R -- радиус вписанной окружности в ΔBAC
1.
tg∠BAC = 12/5, откуда по определению тангенса
Пусть BC = 12x, тогда AC = 5x
По теореме Пифагора найдём AB:
2.
tg∠CAP = 12/5, по определению тангенса из ΔACP
Пусть CP = 12y, тогда AP = 5y
Составим уравнение с теоремы Пифагора в ΔACP и выразим y через x:
Отрицательным y быть не может, так как он выражает длину отрезка, следовательно y = 5x/13, откуда
3. Выразим через x сторону BP, периметр и площадь ΔCPB:
4. Используя формулу площади через радиус вписанной окружности составим уравнение:
5. Используя найденный x, вычислим периметр и площадь ΔABC:
PΔabc = AB + BC + AC = 13x + 12x + 5x = 30x = 30*13
SΔabc = 1/2 * AC * CB = 1/2 * 5x * 12x = 30x² = 30*13²
6. Найдём R, составив уравнение по формуле S = P/2 * R
Доказательство в объяснении.
Объяснение:
Определение: внешний угол треугольника (многоугольника) - угол, образованный одной из его сторон и продолжением смежной стороны.
Таким образом, при каждой вершине прямоугольника образуется по два внешних угла. В прямоугольнике внутренние углы прямые, значит и внешние углы, смежные с внутренними, также прямые. Биссектриса прямого угла делит его на два угла по 45°. Следовательно, пересекаясь, биссектрисы образуют прямоугольные равнобедренные треугольники при общей гипотенузе - стороне прямоугольника - треугольники DFA, AFB, BGC и CHD.
Отрезки АВ = CD, BC = AD как противоположные стороны прямоугольника, следовательно отрезки (катеты равнобедренных треугольников) равны: EA=ED=GB=GC, FA=FB=HC=HD => EF=FG=GH=HE (как суммы равных отрезков). Значит EFGH - параллелограмм (по признаку), а так как все стороны равны, то ромб. Кроме того, ∠E = ∠F = ∠G = ∠H = 90° =>
EFGH - квадрат, что и требовалось доказать.
27° по моему
Объяснение:
т. к. треугольник прямоугольный одна из сторон 90°, которая прямая.
90+63=153
180-153=27°.