дано: решение
c = 17 (см) p = a + b + c
a = x пусть катет a = x, тогда катет b = x - 7
b = x - 7 так как треугольник прямоугольный, то
x мы найдем по теореме пифагора:
p - ? c² = x² + (x - 7)²
17² = x² + x² - 14x + 49
2x² - 14x + 49 - 289 = 0
2x² - 14x - 240 = 0
d₁ = 7² - 2 * (-240) = 49 - (-480) = 529
d₁ > 0, уравнение имеет 2 корня.
x₁ = -(-7) + √529 / 2 = 7 + 23 / 2 = 30 / 2 = 15
x₂ = -(-7) - √529 / 2 = 7 - 23 / 2 = -16 / 2 = -8
второй корень уравнение не подойдет, т.к он имеет отрицательное значение, а длина не может быть отрицательным числом, значит x = 15.
a = 15
b = 15 - 7 = 8
p = 17 + 15 + 8 = 40 (см)
ответ: p = 40 (см)
Для конуса известны 2 соотношения:
S бок=πRL
φ=360R/L
где R- радиус основания, L- образующая конуса.
Из первого соотношения находим RL:
240π=πRL
RL=240
Из второго соотношения выражаем L через R:
120=360R/L
L=3R
3R²=240
R²=80
R=√80=4√5 cм
L=12√5 см
Находим площадь полной поверхности конуса:
S полн.=πR(L+R)=4π√5(12√5+4√5)=4π√5*16√5=320π см²
Можно оставить так, если надо числовое значение, то будет ≈1004,8 см²
А о каком шаре идёт речь в условии, я не знаю... ;)
P.S. Ну и, я надеюсь, ты не забудешь отметить это как "Лучшее решение"?!.. ;))
По свойству биссектрисы AB:AC=BM:MC
BM:MC=1:2
По следствию из теоремы синусов BC:sin60=2R.Из этого =>
BC=2Rsin60=4 корня из 3*(корень из 3)/2=6
MC=(2/3)*BC=(2/3)*6=4