М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Полина3333000999
Полина3333000999
03.11.2020 16:51 •  Геометрия

3. выявить на территории Казахстана формирование и распространение неблагоприятных и опасных атмосферных явлений и и заполнить таблицу Неблагоприятные атмосферные

явления Основные регионы распространения Пути решения данных проблем

Кызылкумы Засухоустойчивые сорта,снегозадержание, лесные полосы

суховеи юг и юго-запад Казахстана (не менее одного)

сильные морозы Метеопрогноз, стойловое содержание скота в морозный период

пыльные бури степи Северного Казахстана, Шалкар, пески Улькен Борсык (не менее одного)

ураганы метеопрогноз

град повсеместно, Илейский Алатау Растрел грозовых облаков снарядами, содержащими иодистое серебро

туманы метеопрогноз

голодед Улытау, Каратау, Шу-Илейские горы (не менее одного)​


3. выявить на территории Казахстана формирование и распространение неблагоприятных и опасных атмосфе

👇
Открыть все ответы
Ответ:
denissneganatan
denissneganatan
03.11.2020

1. Построим полное сечение призмы плоскостью BDE1. Т.к. плоскость BDE1 пересекает параллельные плоскости ABCDEF и A1B1C1D1E1F1 по двум параллельным прямым, то ищем в плоскости A1B1C1D1E1F1 прямую параллельную BD и проходящую через точку E1.

Т.к. четырехугольник A1B1D1E1 - прямоугольник, то A1E1 || B1D1.

Т.к. четырехугольник BDD1B1 - прямоугольник, то BD || B1D1, откуда получаем, что A1E1 || B1D1.

Т.е. полным сечением призмы плоскостью BDE1 будет прямоугольник A1BDE1 (см. рис. 1)

Найдем проекцию прямой CC1 на плоскость  A1BDE1. Для этого в плоскости A1B1C1D1E1F1 опустим перпендикуляр C1O1 на отрезок A1E1, а в плоскости ABCDEF опустим перпендикуляр CO на отрезок BD.

Продолжим прямые CC1 и OO1 до пересечения в точке G.

Угол C1GO1 (см. рис. 2) и будет искомым углом между прямой CC1 и плоскостью BDE1. Найдем его.

CO найдем из равнобедренного треугольника BCD, в котором он является высотой проведенной к основанию. Боковые стороны CB = CD = 1. Угол при вершине BCD = 120° (ABCDEF - правильный шестиугольник), а значит ∠DBC = ∠BDC = 30°, откуда CO = CB / 2 = 1/2.

C1O1 = C1H + HO1 = CO + D1E1 = 1/2 + 1 = 3/2

В треугольнике O1OH сторона OH = CC1 = 1, а HO1 = D1E1 = 1, значит он равнобедренный и прямоугольный, откуда ∠HOO1 = 45°

Т.к. ΔHOO1 подобен ΔO1GC1, то ∠O1GC1 = ∠HOO1 = 45°,

т.е. угол между заданной прямой и плоскостью равен 45°

2. Для того, чтобы найти угол между плоскостью CB1D1 и прямой AB, найдем угол между этой плоскостью и прямой C1D1 параллельной прямой AB. (см. рис. 3)

Треугольник CD1B1 - равносторонний, т.к. все его стороны являются диагоналями равных квадратов со стороной 1.

Точка C1 равноудалена от точек C, B1 и D1, а значит в правильной треугольной пирамиде C1CB1D1 (см. рис. 4) проекция точки C1 на основание CB1D1 попадет в центр описанной окружности ΔCB1D1.

В правильном треугольнике CB1D1 все стороны равны \sqrt{2} (как диагонали квадратов со стороной 1). Радиус окружности описанной около равностороннего треугольника равен \frac{a}{\sqrt{3}}, откуда D_{1}O=R=\frac{a}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}

Из прямоугольника тругольника C1OD1 найдем синус угла C1D1O, который и будет искомым:

cosC_{1}D_{1}O=\frac{D_1O}{C_{1}D_{1}}=\frac{\sqrt{\frac{2}{3}}}{1}=\sqrt{\frac{2}{3}}\\sinC_{1}D_{1}O=\sqrt{1-cos^{2}C_{1}D_{1}O}=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}}


Решить . болела много. не разобралась 1)в правильной шестиугольной призме все ребра равны 1 .найдите
4,7(78 оценок)
Ответ:
egorstorozhenk
egorstorozhenk
03.11.2020

1. Построим полное сечение призмы плоскостью BDE1. Т.к. плоскость BDE1 пересекает параллельные плоскости ABCDEF и A1B1C1D1E1F1 по двум параллельным прямым, то ищем в плоскости A1B1C1D1E1F1 прямую параллельную BD и проходящую через точку E1.

Т.к. четырехугольник A1B1D1E1 - прямоугольник, то A1E1 || B1D1.

Т.к. четырехугольник BDD1B1 - прямоугольник, то BD || B1D1, откуда получаем, что A1E1 || B1D1.

Т.е. полным сечением призмы плоскостью BDE1 будет прямоугольник A1BDE1 (см. рис. 1)

Найдем проекцию прямой CC1 на плоскость  A1BDE1. Для этого в плоскости A1B1C1D1E1F1 опустим перпендикуляр C1O1 на отрезок A1E1, а в плоскости ABCDEF опустим перпендикуляр CO на отрезок BD.

Продолжим прямые CC1 и OO1 до пересечения в точке G.

Угол C1GO1 (см. рис. 2) и будет искомым углом между прямой CC1 и плоскостью BDE1. Найдем его.

CO найдем из равнобедренного треугольника BCD, в котором он является высотой проведенной к основанию. Боковые стороны CB = CD = 1. Угол при вершине BCD = 120° (ABCDEF - правильный шестиугольник), а значит ∠DBC = ∠BDC = 30°, откуда CO = CB / 2 = 1/2.

C1O1 = C1H + HO1 = CO + D1E1 = 1/2 + 1 = 3/2

В треугольнике O1OH сторона OH = CC1 = 1, а HO1 = D1E1 = 1, значит он равнобедренный и прямоугольный, откуда ∠HOO1 = 45°

Т.к. ΔHOO1 подобен ΔO1GC1, то ∠O1GC1 = ∠HOO1 = 45°,

т.е. угол между заданной прямой и плоскостью равен 45°

2. Для того, чтобы найти угол между плоскостью CB1D1 и прямой AB, найдем угол между этой плоскостью и прямой C1D1 параллельной прямой AB. (см. рис. 3)

Треугольник CD1B1 - равносторонний, т.к. все его стороны являются диагоналями равных квадратов со стороной 1.

Точка C1 равноудалена от точек C, B1 и D1, а значит в правильной треугольной пирамиде C1CB1D1 (см. рис. 4) проекция точки C1 на основание CB1D1 попадет в центр описанной окружности ΔCB1D1.

В правильном треугольнике CB1D1 все стороны равны \sqrt{2} (как диагонали квадратов со стороной 1). Радиус окружности описанной около равностороннего треугольника равен \frac{a}{\sqrt{3}}, откуда D_{1}O=R=\frac{a}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}

Из прямоугольника тругольника C1OD1 найдем синус угла C1D1O, который и будет искомым:

cosC_{1}D_{1}O=\frac{D_1O}{C_{1}D_{1}}=\frac{\sqrt{\frac{2}{3}}}{1}=\sqrt{\frac{2}{3}}\\sinC_{1}D_{1}O=\sqrt{1-cos^{2}C_{1}D_{1}O}=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}}


Решить . болела много. не разобралась 1)в правильной шестиугольной призме все ребра равны 1 .найдите
4,7(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ