ответ: АН=35см; СН=5см
Объяснение: обозначим данные вершины А В С, а расстояние от точки до плоскости ВН. Так как расстоянием от точки к плоскости является перпендикуляр, то ВН перпендикулярно плоскости. У нас получился треугольник АВС с высотой ВН. ВН делит ∆АВС на 2 прямоугольных треугольника АВН и СВН, в которых наклонные АВ и ВС - гипотенуза, а ВН и АН и СН- катеты, причём АН и СН являются проэкция и на плоскость, найдём их по теореме Пифагора: АН²=АВ²-ВН²=37²-12²=
=1369-144=1225; АН=√1225=35см
СН ²=АВ²-ВН²=13²-12²=169-144=25;
СН=√25=5см
Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
2r = a sinα.
Отсюда находим сторону а ромба и его периметр Р:
а = 2r/sinα = 2*3/0,5 = 12 см.
Р = 4а = 4*12 = 48 см.
Находим апофему А:
А = r/cos β = 3/cos 60° = 3/0,5 = 6 см.
Sбок = (1/2)РА = (1/2)*48*6 = 144 см².
sin IV четверти <0