1) По стороне правильного треугольника можно его вычислить площадь:
S = a²√3 / 4 = (16√3)² · √3 / 4 =64√3 см²
высота этого треугольника:
h = a√3 / 2 = 16 · √3 · √3 / 2 = 24 см
треть высоты:
r = 24 ÷ 3 = 8 см (радиус вписанной в него окружности)
Высота пирамиды, апофема и радиус вписанной в основание пирамиды окружности образуют прямоугольный треугольник:
17² = 8² + H² (теорема Пифагора), где H - высота пирамиды:
H² = 17² - 8² = (17 - 8)(17 + 8) = 9 · 25 ⇒ H = 15 см
V = 1/3 · Sосн · H = 1/3 · 64√3 · 15 = 320√3 см³
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
1) (3х+у)/√10 = (-х+3у)/√10
3х+у = -х+3у
4х = 2у
у = 2х не подходит (проходит выше сторон треугольника).
2) (3х+у)/√10 = -(-х+3у)/√10
3х+у = -(-х+3у)
2х = -4у
у = (-1/2)х.
Уравнение перпендикулярной прямой у = 1/(-к)+в
В нашем случае уравнение основания (назовём его АВ) будет таким:
у = 1(1/2)х+в = 2х+в.
Подставим координаты известной точки на основании (5;0):
0 = 2*5+в отсюда в = -10.
Уравнение АВ: у = 2х-10 или 2х-у-10 = 0.
Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
Умножим первое уравнение на 2 и сложим:
5у = 10, у = 10/5 = 2, х = 3у = 3*2 = 6.
Это точка В(6; 2).
ответ: вершины треугольника О(0;0), А(2;-6), В(6;2).