Объяснение:
. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС.
б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°.
2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные).
Что и требовалось доказать.
б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°.
ответ: <ОАС=45°.
Подробнее - на -
МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм.
Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна:
МС=√(МД²+СД)=√(15²+20²=25 дм.
Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм².
Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм².
Площадь двух граней, прилежащих к высоте МД:
S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм².
Площадь основания: S4=АВ·АД=20·10=200 дм².
Общая площадь - это сумма всех найденных площадей:
S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.