1 задача. чертим треугольник со сторонами 5, 12, 8.
пусть АБ=5, БЦ=12, АЦ=8.
середина стороны АБ точка Е, середина стороны БЦ точка М, середина стороны АЦ точка Н,
соединяем между собой точки середин сторон ( т е Е-М-Н) у нас получается еще 1 треуголник.
по получившемуся рисуунку замечаем, что прямые ЕМ, МН, НЕ явл средними линиями треугольника АБЦ, так как проходят через 2 середины сторон и соответственно паралельны основаниям (сторонам) ЕМ || АЦ, МН || АБ, НЕ || БЦ
средняя линия треугольника равна половине основания (стороны) которой параллельна, т е
ЕМ=1/2 АЦ=1/2 * 8=4
МН=1/2 АБ=1/2*5=2,5
НЕ=1/2 БЦ=1/2*12=6
значит периметр треуголника ЕМН
Р(емн)=4+2,5+6=12,5
т.к. данные прямые равны, они образуют в пространстве равнобедренный треугольник, а т.к. угол между прямыми 60 градусов, то этот треугольник не только равнобедренный, но и равносторонний, т.е. основание этого треугольника = тоже 2см
это же основание является гипотенузой прямоугольного треугольника на плоскости, образованного проекциями наклонных, этот прямоугольный треугольник тоже будет равнобедренным (его катеты равны, как проекции равных наклонных)
по т.Пифагора 2^2 = a^2 + a^2 = 2a^2
a^2 = 2
a = V2 ---катет прямоугольного треугольника на плоскости, проекция наклонной
расстояние от точки до плоскости --- перпендикуляр к плоскости, получился еще один прямоугольный треугольник, но уже в пространстве, один катет ---искомое расстояние, второй катет ---проекция наклонной, гипотенуза ---наклонная
по т.Пифагора x^2 = 2^2 - a^2 = 4-2 = 2
x = V2