вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
вертикальные углы равны.
при пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.
если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.
2.теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. доказывается наложением одного из треугольников на другой. треугольники полностью совместятся, следовательно, по определению они равны.3.1 угол x, второй тогда будет 5x, а сумма смежных углов составляет 180° x + 5x = 180°6x = 180°
x = 30°
первый угол - 30°, второй 5 раз больше, значит 5*30 = 150°
ответ: 30° и 150°
1.перпендикулярные прямые
прямая (отрезок прямой) обозначается двумя большими буквами латинского алфавита или одной маленькой буквой. точка обозначается только большой латинской буквой. прямые могут не пересекаться, пересекаться или совпадать. пересекающиеся прямые имеют только одну общую точку, непересекающиеся прямые — ни одной общей точки, у прямых все точки общие. определение. две прямые, пересекающиеся под прямым углом, называются перпендикулярными. перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности «⊥». свойства перпендикулярных прямых:1.меньший из углов, которые образуются при пересечении двух прямых на плоскости, называется углом между прямыми.
2.две прямые называются перпендикулярными, если они пересекаются под прямым углом.
3.через точку, не принадлежащую прямой, можно провести прямую, перпендикулярную данной прямой, и только одну.
4.отрезки или лучи, которые лежат на перпендикулярных прямых, называются перпендикулярными.
5.перпендикуляром к данной прямой называется отрезок прямой, перпендикулярный данной, который имеет одним из своих концов точку пересечения прямой и отрезка. при этом конец отрезка, лежащий на прямой, называется основанием перпендикуляра.
6.через каждую точку прямой можно провести перпендикулярную ей прямую и только одну.
7.с любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр и только один.
8.длина перпендикуляра, опущенного из точки на прямую, называется расстоянием от точки до прямой.
9.расстояние от любой точки одной из параллельных прямых до второй прямой называется расстоянием между параллельными прямыми.
2.теорема 3 (третий признак равенства треугольников — по трем сторонам)
если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
запишите сокращенно условие и заключение теоремы.
доказательство:
для доказательства приложим треугольники большими сторонами. треугольник a1b1c1 займет положение ab2c . треугольник bab2 и треугольникbcb2 — равнобедренные. из равенства углов при основании получаем, что b=b2 . используем первый признак равенства треугольников.
3.пусть основание будет х, тогда боковые стороны х-5 ,можем составить уравнение:
х-5+х-5+х=35
3х=45
х=15, т.к. боковые стороны равны х-5, то вместо х подставляем получившееся число будет 15-5=10
следовательно стороны равны 10 см.
ответ: 10 см.
ответ: Верхнее основание 3см
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Верхнее основание 3.
Мы можем также найти высоту, зная х:
Так как высота равна (7-х)÷2, то
(7-3)÷2=4÷2=2. Высота трапеции 2
Галочки вверху над х^ - читайте как Х в КВАДРАТЕ
<D=<C=90
<A=x
<B=3x
x+3x=180
4x=180
x=45
<A=45
<B=135
<B+<C=135+90=225