А1С1 – диагональ квадрата со стороной, равной 6 см
Формула диагонали квадрата d=a√2 ⇒
A1C1=6√2
B1D1=A1C1=6√2
Проведем в боковых гранях диагонали AD1 и АВ1
Боковые ребра параллелепипеда равны, основание – квадрат по условию ⇒
треугольник В1АD1 равнобедренный, т.к. диагонали равных граней равны. Диагонали квадрата равны и точкой пересечения делятся пополам. OB1=OD1=3√2
О - центр А1С1. ⇒
АО - медиана ∆ D1AB1. По т.Пифагора из треугольника АОВ1 найдем длину искомого отрезка
АО=√(AB1*-ОВ1*)=√(100-18)=√82
ОТВЕТ: АС=√3
∠А лежит против стороны ВС. Так как ∠А=30° то то теореме о каттете лежащем против угла в 30°, то гипотинуза АВ=2*ВС=2.
ПО теореме Пифагора найдём АС
АВ²=АС²+ВС², отсюда