Сделаем рисунок.
АВ - диаметр, АС и СВ - катеты прямоугольного треугольника, поскольку вписанный угол АСВ опирается на диаметр и на дугу 180°, и потому равен 90°.
СD делит диаметр в отношении 1:4, следовательно, на 5 частей - отрезки 1/5 диаметра и 4/5
Диаметр окружности равен 2R =20см
АD=20:5=4 cм
DВ=20-4=16 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
DC- высота треугольника АСВ, т.к. по условию это перпендикуляр из С к диаметру, и является расстоянием от С до диаметра.
DC²=АD·DВ=4·16=64
DC=√64=8
Сделаем рисунок.
АВ - диаметр, АС и СВ - катеты прямоугольного треугольника, поскольку вписанный угол АСВ опирается на диаметр и на дугу 180°, и потому равен 90°.
СD делит диаметр в отношении 1:4, следовательно, на 5 частей - отрезки 1/5 диаметра и 4/5
Диаметр окружности равен 2R =20см
АD=20:5=4 cм
DВ=20-4=16 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
DC- высота треугольника АСВ, т.к. по условию это перпендикуляр из С к диаметру, и является расстоянием от С до диаметра.
DC²=АD·DВ=4·16=64
DC=√64=8
Так как угол А равен 30 градусов то катет лежащий против него равен половине гипотенузы, то есть 2 (гипотенуза АВ по условию 4) Тогда сторона АС=сторона АВ в квадрате-сторона ВС в квадрате и все под корнем (теорема Пифагора) . Если цифрами 4 в квадрате минус 2 в квадрате все под корнем, получится 2 и корень из 2. В треугольнике СНА угол А 30 градусов, следовательно противолежащий ему катет, а это СН равен половине гипотенузы АС, а она равна 2 корня из 2, следовательно СН=2 корня из 2 разделить на 2. Равно корень из 2.