В треугольнике АВС проведена медиана ВD. Медиана ВD перпендикулярна стороне АС. Докажите, что треугольник АВС – равнобедренный в файле есть еще задания
1) Т.к BD-медина, перпендикулярная AC, то она является высотой.
2) Т.к BD- медиана и высота, то по утверждению "В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой" треугольник ABC равнобедренный, что и требовалось доказать.
Шеф, здесь собственно как бы нечего решать. Поскольку треугольник одновременно является и прямоугольным, и равнобедренным, то высота, проведённая к гипотенузе равна половине гипотенузы. Просто втыкаешь в формулу h = MK / 2 = 18 / 2 = 9 см - это и есть ответ.
Это свойство такого треугольника вытекает из того факта, что середина гипотенузы, она же точка куда приходит высота, одновременно также является центром описанной окружности, следовательно как половина гипотенузы, так и высота - все они являются радиусами одной и той же окружности, следовательно равны друг другу. Отсюда и использованная формула.
Радиусы окружности (проведенные в точки касания) будут перпендикулярны сторонам треугольника)) центр вписанной окружности будет лежать на высоте (биссектрисе, медиане), проведенной к основанию равнобедренного треугольника)) боковую сторону треугольника можно найти по т.Пифагора, а радиус вписанной окружности из площади треугольника)) осталось рассмотреть прямоугольный треугольник, в котором половина искомого расстояния будет высотой к гипотенузе))) гипотенузу можно найти, отняв из высоты (15) найденный радиус и вновь можно воспользоваться двумя формулами площади для треугольника...
Дано:
ABC - треугольник.
BD - медиана
BD ⊥ AC
Доказать: ABC - равнобедренный
1) Т.к BD-медина, перпендикулярная AC, то она является высотой.
2) Т.к BD- медиана и высота, то по утверждению "В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой" треугольник ABC равнобедренный, что и требовалось доказать.