Тут хорошо бы рисунок, но попробую как-то словами.
1. Строится проекция вершины бокового ребра, противолежащего гипотенузе на полоскость основания.
2. Строятся проекции этой вершины НА КАТЕТЫ треугольника в основании (то есть из вершины в плоскости бокового ребра проводится перендикуляр к катету основания).
3. Если внимательно посмотреть на фигуру, вершинами которой являются эти три проекции, а также - вершина прямого угла основания, то это - прямоугольник, в котором проекция бокового ребра на основание - это диагональ.
(Вы должны рассмотреть плоскости, проходящие через перпендикуляр к катету из вершины этого ребра и высоту всей призмы, проведенной из этой же вершины. Поскольку обе прямые перпендикулярны катету в основании, то вся эта плоаскоть перпендикулярна катету, и отрезок, соединяющий проекцию вершины на основание с проекцией этой вершины на катет, тоже перпендекулярен катету - он тоже лежит в этой плоскости. Это справедливо для обеих проекция на катеты. Поэтому там прямоугольник.)
4. Проекции бокового ребра на катеты основания фактически заданы - они равны
p1 = 5*cos(60) [...60 градусов, конечно...] = 5/2;
p2 = 5*cos(45) = 5*√2/2;
5.Это стороны прямоугольника, а диагональ равна
p3 = √(p1^2 + p2^2) = (5/2)*√(2 + 1) = 5*√3/2; (уже видно, что бовокая сторона наклонена к основанию под углом в 30 градусов, но я сейчас получу высоту призмы напрямую)
6. Нам известна длина наклонной 5 и длина её проекции 5*√3/2; поэтому расстояние от вершины бокового ребра до плоскости основания равно 5/2 - по Т.П.
7. Обем призмы равен (8^2/2)*(5/2) = 80
сделать что-то простое :)
Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже.
Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.
Далее речь идет об этом прямоугольном треугольнике.
Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.
Технически это можно проделать и "тупым" и не одним :) - можно например так.
Пусть один катет 3*х тогда другой 4*х, тогда
3^2*x^2 + 4^2*x^2 = 50^2;
x^2 = 100; x = 10; катеты 30 и 40.
Площадь такого треугольника 30*40/2 = 600;
Площадь всего ромба в 4 раза больше, то есть 2400;
Площадь равна высоте, умноженной на боковую сторону, то есть высота равна
2400/50 = 48.
Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.
Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то
в этом случае, конечно, надо применить формулу Герона, она очень кстати.
Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;
р - ВС = р - АВ = 30
р - АС = 20
S^2 = 80*30*30*20 = (1200)^2
S = 1200
Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше.
Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :