Дано: треугольник ABC, ∠A = 90°
Доказать: ∠A < 90°, ∠B < 90°
1) Проведём прямую, параллельную прямой, которой принадлежит сторона AB и проходящей через точку С. Обозначим точку D на этой прямой ниже точки C. Обозначим точку E на этой прямой выше точки C.
2) ∠B = ∠BCE как накрест лежащие при параллельных прямых AB и DE и секущей BC.
3) ∠A = ∠ACD как накрест лежащие при параллельных прямых AB и DE и секущей AC.
4) Так как ∠ACD = ∠ACE как односторонние при параллельных прямых AB и DE и секущей AC, то ∠ACE = 90°.
5) Так как сумма односторонних углов равна 180°, то ∠ACE = 90°, а ∠BCE = ∠B, значит, ∠B < 90° и ∠С < 90°, поскольку ∠B + ∠С = 90°.
Значит, ∠B и ∠С - острые. Что и требовалось доказать.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).