Доказано, отметьте ответ как лучший
Объяснение:
1. <A = <C = 70° ( внутренние противолежащие углы в параллелограмме равны )
AB = CD, AD = BC, <A = <C
∆ABD = ∆BCD ( по свойству СУС, сторона угол сторона)
2. а) <CAD = <CAB, AD = AB, AC - общая сторона
∆ADC = ∆ABC (СУС)
б) BC = DC (из предыдущего доказательства)
тогда ∆CBD - равнобедренный, тогда CF - высота, биссектриса и медиана (свойство равнобедренного треугольника)
тогда <FCB = <FCD
FC - общая сторона
∆BFC = ∆DFC (СУС)
3. AB = BC (по условию)
тогда ∆ABC - равнобедренный, и BO - биссектриса
=> <ABO = <CBO
BO - общая сторона
=> ∆ABO = ∆CBO
тогда AO = CO
а угол AOE = углу COE = 90°
сторона OE - общая
тогда ∆AOE = ∆COE (сторона угол сторона)
надеюсь и заслуживаю лайк
8. Припустим, что k i l паралельны, а m секущая. Тогда тут будут действовать теоремы о внутрених и внешних углах с секущей
Вертикальные угол, с углом 36° будет 36°
Модем видет, что здесь действует теорема о внутреннем и внешнем углах сума которых ровна 180°. По этому k||l
9. Рассмотрим треугольник АВС
АВ=СА
то есть треугольник АВС равнобедренный
с этого модем скать, что ВС основа, угол В = углу С
На рисунку 9 видим, что дано два угла и они равны
Соответственно угол С будет равен тем двом углам, так как они равны и один из рих равен углу С
Тут мы мы можем предположить, что ВС может быть секущей и тогда внутренние разносотороние куты должны будут быть равны если a||b.
Соответственно a||b