Квадрат вписан в окружность, которая, в свою очередь, вписана в правильный треугольник.
Пусть сторона треугольника равна а.
Высота его равна
(a√ 3):2
Радиус окружности, вписанной в правильный треугольник, равен одной трети ее высоты:
r=(a√ 3):6
Радиус описанной вокруг квадрата окружности равен половине его диагонали.
А диагональ = 2r.
Так как окружность одна и та же:
d=2r =2(a√ 3):6=(a√ 3):3
Пусть сторона квадрата равна у. Тогда его диагональ
d=у√2
Подставим значение диагонали
у√2=(a√ 3):3
у=(a√ 3):3):√2=(a√ 3):3√2
Сторона треугольника : сторона квадрата
а:у=а:(a√ 3):3√2=3а√2):a√ 3
Умножим на √ 3 числитель и знаменатель дроби:
а:у=3 √2): √ 3=3 √2*√ 3): √ 3*√ 3=3√6):3=√6
ответ: отношение сторон правильных треугольника и квадрата =√6:1 или
квадрата и треугольника 1:√6
Объяснение:
Возьмем произвольный четырёхугольник ABCD у которого диагонали перпендикулярны см рис
координаты точек А(0;0), В(3;5,2), С(9;5,2), Д(6;0), В₁(1,5;2,6), Д₁(3;0)
Т . В₁ и Д₁ середины АВ и AD
из этих точек найдем уравнение прямой ⊥ СД и ВС
уравнение прямой СД по двум точкам С, Д у₁=1,73х-10,4
уравнение прямой А₁Д₁ ⊥ ВС: х=3
уравнение прямой А₁В₁ ⊥ СД: у₂=-0,58х+3,47
Прямая, проходящая через точку В₁(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
(х-х₀)/А=(у-у₀)/В
Уравнение прямой :
(х-1,5)/(-1,73)=(у-2,6)/1 ⇒ y₂ = -0.58x + 3.47
найдем точку пересечения прямых А₁
х=3
y₂ = -0.58x + 3.47
А₁(3;1,74)
прямая АС имеет уравнение у₃=0,58х
сравним ординату точки пересечения А₁ 1,74 со значением у₃ при х=3
у₃=0,58*3=1,74
Координаты точек совпадают
Что и следовало доказать
Диагональ трапеции делит ее на 2 треугольника, в которых отрезки средней линии будут средними линиями этих треугольников
Ср. л . тр-ка = 1/2*a
Значит отрезки будут равны 1/2*3 = 1,5 и 1/2*17=8,5
больший отрезок равен 8,5