Объяснение:
2:ON-Биссектриса треугольника MOK
3:EN-высота треугольника CDE
6:BP-медиана треугольника ABC
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
Объяснение:
Медиана – это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону
Биссектриса треугольника – это отрезок, соединяющий вершину треугольника с противоположной стороной и делящий угол при вершине пополам.
1) ON – медиана треугольника МОК – неверно, на чертеже нет никаких данных о том, что точка N –середина отрезка МК
2) ON – высота треугольника МОК – неверно, на чертеже нет никаких данных о том, что ∠MNO=90°.
3) ЕН – высота треугольника DEC – верно, так как ∠EHD=90°
4) BP – медиана треугольника АВD – верно, так как AР=РD=7, то есть, точка Р -середина отрезка AD
5) ВР – биссектриса треугольника ABD – неверно, на чертеже нет никаких данных о том, что ∠ABP