1) Бічна грань - прямокутник. ЇЇ розміри -dsin α*dcos α = d²sin2α/2. Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2. 2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2. Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3, Площа основи - (√2)² = 2. Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1). 3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані. Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди. Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
Проведём радиусы ОА и ОД окружности описанной около треугольника АDF(смотри рисунок). Угол АОД окружности (на рисунке не показана)-центральный, а АFД –вписаный. Но они оба опираются на одну дугу АД. То есть угол АОД в два раза больше угла АFД(условно обозначен 1).Треугольник АОД- равнобедренный(АО и ОД радиусы), высота ОЕ делит угол АОД пополам. Отсюда угол ОАЕ=90-угол1. Далее- угол СВД равен углу АFВ как накрест лежащие поскольку АF параллельна ВС. Но угол СВД равен углу САД поскольку они оба опираются на дугу СД. Тогда угол ОАС =угол САД+ угол ОАД=угол1+угол90-угол1=90градусов. То есть радиус ОА окружности описанной около АДF перпендикулярен АС. А это значит , что окружность касается этой прямой
ЇЇ розміри -dsin α*dcos α = d²sin2α/2.
Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2.
2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2.
Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3,
Площа основи - (√2)² = 2.
Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1).
3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані.
Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди.
Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.