Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
1. АВ=√(8²+(-6)²+10²)=10√2
алгоритм - от координат конца отрезка отняли координаты начала. результаты возвели в квадрат, сложили и извлекли корень квадратный из суммы.
2) х=1; у=-1;z=1
алгоритм: сложили соответствующие координаты и поделили каждую на два.
2. 1)АВ(9;-10;7), СВ(4;2;-3) алгоритм : от координат конца отняли координаты начала вектора.
2)IАВI=√(9²+(-10)²+7²)=√230
3) 2АВ+3СВ=2*(9;-10;7)+3(4;2;-3)=(30;-14;5)
2АВ-3СВ=2*(9;-10;7)-3(4;2;-3)=(60;-26;23)
4) IСВI=√(16+4+9)=√29; АВ*СВ/(IАВI*IСВI)=
(36-20-21)/(√230*√29)=-5/√6670≈-5/81.67-0.0612
3. а)-15х-48-27=0⇒х=75/(-15)=-5 скалярное произведение равно нулю.
б)х/(-15)= -4/12= 3/(-9) соответствующие координаты пропорциональны х=5