АВСД - параллелограмм. АМ - бисектрисса. Угол ВМА = 48.
У параллелограмма противоположные стороны параллельны и равны, значит
угол ВМА = МАД - как накрест лежащие углы при параллельных прямых ВС и АД и секущей АМ.
Так как АМ - бисектрисса угла А, то угол А = 48 * 2 = 96 градусов.
У параллелограмма противолежащие углы равны, значти угол С = 96 градусов.
У паралелограмма сумма углов, прилегающиж к одной стороне равна 180 градусов, значит угол В = 180 - 96 = 84 градуса.
Угол Д = В = 84 градуса.
ответ: 96, 84, 96, 84.
Плоскость треугольника АВС пересекает сферу с центром в точке О по окружности, которая описана около ΔАВС. Из точки О проведем ОК перпендикулярно плоскости АВС, ОК — искомое расстояние, точка К — центр описанной около ΔАВС окружности. Соединим точку К с одной из вершин ΔАВС, например, с А, проведем радиус в точку А.