1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Объяснение:
Строим сторону АВ = 14 м, взяв для простоты 1 мм за 1 м. С вершинами в точках А и В, со стороной АВ строим углы в 120°. Откладываем на полученных сторонах отрезки АС = BD = 14 м и строим с вершинами в точках С и D углы 120°. Откладываем на полученных сторонах СМ = DP = 14 м, соединяем точки М и Р. Шестиугольник ABDPMC есть план Семиглавой башни. Этот многоугольник называется правильным, так как у него стороны и углы равны. Точка О есть центр правильного многоугольника. Из него сторона АВ видна под углом AOB.