В треугольнике ABC провелена биссектрису BL. Оказалось что угол CAB равен углу LBC. Точка H лежит на BC и BC перпенндикулярно LH. Найдите BH, если известно, что AB=10.
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
1. всі чотири сторони квадрата мають однакову довжину, тобто вони рівні: ab = bc = cd = ad 2. протилежні сторони квадрата паралельні: ab||cd, bc||ad 3. всі чотири кути квадрата прямі: ∠abc = ∠bcd = ∠cda = ∠dab = 90° 4. сума кутів квадрата дорівнює 360 градусів: ∠abc + ∠bcd + ∠cda + ∠dab = 360° 5. діагоналі квадрата мають однакової довжини: ac = bd 6. кожна діагональ квадрата ділить квадрат на дві однакові симетричні фігури 7. діагоналі квадрата перетинаються під прямим кутом, і розділяють одна одну навпіл: ac┴bd ao = bo = co = do = d 2 8. точка перетину діагоналей називається центром квадрату і також є центром вписаного та описаного кола 9. кожна діагональ ділить кут квадрату навпіл, тобто вони є бісектрисами кутів квадрату: δabc = δadc = δbad = δbcd ∠acb = ∠acd = ∠bdc = ∠bda = ∠cab = ∠cad = ∠dbc = ∠dba = 45° 10. обидві діагоналі розділяють квадрат на чотири рівні трикутника, до того ж ці трикутники одночасно і рівнобедрені, і прямокутні: δaob = δboc = δcod = δdoa
20
Объяснение:
Осылай ойлап отрмше ким бар не тема