У вас получается 2 треугольника А1 К В1 и А2 К В2 Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей) A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же. КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
16 см
Объяснение:
1) Довжини дотичних, проведених до кола з однієї точки, рівні.
Вершини трапеції можна розглядати як ті самі точки, з яких проведені дотичні, які є в даному випадку сторонами трапеції.
2) Отже, на меншій підставі точка дотику відстоїть від вершини на 2 см, а на більшій підставі - на 32 см.
3) Тепер, якщо з вершини меншого підстави опустити перпендикуляр на більшу основу, то вийде прямокутний трикутник:
- його гіпотенуза = 32 + 2 = 34 см - це бічна сторона трапеції;
- горизонтальний катет (різниця між нижньою і верхньою точками торкання) = 32-2 = 30 см;
- вертикальний катет-висота Н, яку треба знайти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см
Відповідь: 16 см
1) Длины касательных, проведённых к окружности из одной точки, равны.
Вершины трапеции можно рассматривать как те самые точки, из которых проведены касательные, являющиеся в данном случае сторонами трапеции.
2) Следовательно, на меньшем основании точка касания отстоит от вершины на 2 см, а на большем основании - на 32 см.
3) Теперь, если из вершины меньшего основания опустить перпендикуляр на большее основание, то получится прямоугольный треугольник:
- его гипотенуза = 32 + 2 = 34 см - боковая сторона;
- горизонтальный катет (разность между нижней и верхней точками касания) = 32 - 2 = 30 см;
- вертикальный катет - высота Н, которую надо найти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см