5. Два равных прямоугольных треугольника с площадью 12 расположены так, что вершина прямого угла одного из них лежит на гипотенузе другого, и они имеют общую биссекртису прямого угла, длина которой равна 3. Найдите площадь фигуры, состоящей из всех точек данных треугольников.
Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников:
1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС
2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота.
3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.