М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
cosovanovcostya
cosovanovcostya
04.04.2022 01:25 •  Геометрия

Параллелограмм ABCD является изображением квадрата A1B1C1D1 (рис. 108)-(в этом рисунке обычный пар-ам. )Постройте изображение радиуса вписанной окружности квадрата, проведённого в точку касания этой окружности со стороной А1D1.

👇
Ответ:
SashaD02
SashaD02
04.04.2022
Хорошо, я могу выступить в роли учителя и объяснить, как решить эту задачу.

Для начала, давайте разберемся с понятием "вписанной окружности". Вписанная окружность - это окружность, которая касается всех сторон какой-то фигуры, в данном случае квадрата A1B1C1D1.

Теперь давайте рассмотрим как построить изображение радиуса вписанной окружности квадрата.

Шаг 1: Начнем с построения квадрата A1B1C1D1. Мы знаем, что параллелограмм ABCD является его изображением. Так что нам нужно построить квадрат A1B1C1D1.

Шаг 2: Выберем одну из сторон квадрата A1B1C1D1, например, сторону A1D1. Эта сторона будет касаться вписанной окружности.

Шаг 3: Продолжим линию стороны A1D1 за пределы квадрата, до точки касания с вписанной окружностью. Обозначим эту точку как X.

Шаг 4: Теперь соединим точку X с центром вписанной окружности, обозначим его как O.

Шаг 5: Проведем радиус окружности от центра O до точки касания с стороной A1D1, обозначим эту точку как P.

Шаг 6: Теперь у нас есть изображение радиуса вписанной окружности квадрата, проведенного до точки касания с стороной A1D1. Мы обозначили этот радиус как OP.

Обоснование:

Поскольку сторона A1D1 квадрата A1B1C1D1 является касательной в точке X вписанной окружности, то радиус вписанной окружности будет перпендикулярен касательной.

Поэтому, когда мы проводим радиус OP, он будет перпендикулярен к стороне A1D1, и является изображением радиуса вписанной окружности.

Я надеюсь, что мое объяснение было понятным и помогло вам понять, как построить изображение радиуса вписанной окружности квадрата, проведённого до точки касания этой окружности со стороной A1D1. Если у вас есть еще вопросы, пожалуйста, не стесняйтесь задавать.
4,7(29 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ