Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
1)Cумма четырех углов, образующихся при пересечении двух прямых, равна 360°. Поскольку сумма трех их них равна 320°, на четвертый остается: 360°-320°=40° Смежный с ним равен 180°-40°=140° ответ: Две пары вертикальных углов. Одна пара по 40°, вторая по 140°.
2) Пусть один из данных вертикальных углов х. С каждым из этих вертикальных смежный угол составляет 180°, и равен 180°-х Тогда сумма двух вертикальных х+х=2х, и это в 4 раза меньше, чем 180-х 4*2х=180°-х 9х=180° х=20° ( каждый из данных вертикальных) Их сумма 40°, а смежный с каждым из них 180°-20°=160° 160°:40°=4 ( смежный больше суммы в 4 раза)
3) Сумма углов при пересечении двух прямых 360° Пусть четвертый угол равен х° Тогда сумма остальных трех х+260° Сумма всех четырех углов х+(х+260)=360° 2х=100° х=50°( вертикальный с ним тоже 50°) Смежные с ними углы равны 180°-50°=130° ответ. 2 угла по 50°, 2 угла по 130°
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².