1)катеты a и b, гипотенуза: с; медиана, проведённая из вершины прямого угла, равна половине гипотенузы; медиана равна с/2; 2)образуются два треугольника; у которых сторонами являются катет, медиана и половина гипотенузы. 3) а+с/2+с/2=8; a+c=8 (1); b+c/2+c/2=9; b+c=9 (2); по теореме Пифагора: а^2+b^2=c^2 (3); из (1) и (2) выразим a и b и подставим в (3); 4) а=8-с; b=9-с; (8-с)^2+(9-с)^2=с^2; 64-16с+с^2+81-18с+с^2=с^2; с^2-34с+145=0; D=34^2-4*145=1156-580=576; c=(34-24)/2=5; c=(34+24)/2=29; ( посторонний корень); а=8-5=3; b=9-5=4; ответ: 3; 4; 5
Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.
Равнобедренный треугольник
АВ = ВС — боковые стороны
АС — основание
Свойства равнобедренного треугольника
Свойства равнобедренного треугольника выражаются через 5 теорем:
Теорема 1. В равнобедренном треугольнике углы при основании равны.
равнобедренный треугольник ABC
Доказательство теоремы:
Рассмотрим равнобедренный Δ ABC с основанием АС.
Объяснение: