Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
Треуг. ABC прям, где В=90, а С=60, поэтому А=30 (сумма острых углов в прям треуг 90)
Рассмотрим треуг ВЕА:
ВЕ=2, А=30 отсюда следует правило: катет (ВЕ), лежащий против угла в 30 равен половине гиппотенузы (АВ)
ВЕ=1/2АВ, значит АВ=2ВЕ=2*2=4(см)