Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Пусть дан ромб ABCD, дианогаль AC которого равна стороне и равна 4. В ромбе все стороны равны, из этого следует, что треугольники ABC и ACD равносторонние (в каждом из треугольников 2 стороны являются сторонами исходного ромба и равны между собой, а третья сторона - диагональ AC, которая равна им по условию). Значит, площадь ромба равна сумме площадей двух равносторонних треугольников со стороной 4. Площадь равностороннего треугольника со стороной a равна , тогда площадь ромба будет равна 2*(4²√3/4)=2*4*√3=8√3