В треугольнике АВС точка К разбивает АВ в отношении 1:3 (АК:КВ = 1:3), точка М разбивает отрезок ВС (ВМ:МС = 1:2).Отрезок СК пересекает отрезок АМ в точке О. Найдите СО:ОК - ?
Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М ∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF: ∠ M =60° ∠MNF=30° MF=4 см ( катет против угла в 30° равен половине гипотенузы) По теореме Пифагора NF²=MN²-FM²=8²-4²=64-18=48 NF=4√3 см h ( трапеции)=4√3 см
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)