Объяснение:
Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность
Сумма острых углов прямоугольного треугольника равна 90°.
=>∠ЕВС = 90° - 70° = 20°
Так как ЕВ - биссектриса, по условию => ∠АВС = 20° × 2 = 40°
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠САВ = 90° - 40° = 50°
ответ: 50°.
Задача#2.Так как АВ = ВС => ∆АВС - равнобедренный.
∠А = ∠С, по свойству равнобедренного треугольника.
Сумма углов треугольника равна 180°.
180° - 120° = 60° - сумма ∠А и ∠С.
∠А = ∠С = 60 ÷ 2 = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АН = 4 ÷ 2 = 2 см.
ответ: 2 см.
Задача#3.Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°.
=> ∠CAD = 30°
Так как AD = AB = 7 см => ∆ABD - равнобедренный.
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠D = 90° - 30° = 60°
∠D = ∠B = 60°, по свойству равнобедренного треугольника.
Сумма углов треугольника равна 180°.
=> ∠А = 180° - (60° + 60°) = 60°
Вывод: ∆BAD - равносторонний (все углы равны по 60°)
ответ: 60°, 60°.
Задача#4.Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°.
=> ∠КСВ = 30°
Так как СК - биссектриса, по условию => ∠АСК = 30°
∠ВСА = 30° × 2 = 60°
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠ВАС = 90° - 60° = 30°.
Сумма смежных углов равна 180°.
∠ВАС смежный с ∠CAD => ∠CAD = 180° - 30° = 150°.
ответ: 150°.
Задача#5.Рассмотрим ∆АСР и ∆РВС:
АС = РВ, по условию.
СВ - общая сторона.
=> ∆АСР = ∆РВС, по катетам.
=> ∠А = ∠Р.
Ч.Т.Д.
На рисунке изображён рисунок к 1 задаче (изначально точка Е не была дана)