В равнобедренном треугольнике с длиной основания 38 cм проведена биссектриса угла ∡ABC. Используя второй признак равенства треугольников, докажи, что отрезок BD является медианой, и определи длину отрезка AD. Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке);
1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то ∡ A = ∡ ;
2. так как проведена биссектриса, то ∡ = ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC — .
По второму признаку равенства треугольников ΔABD и ΔCBD равны. Значит, равны все соответствующие элементы, в том числе стороны AD=CD. А это означает, что отрезок BD является медианой данного треугольника и делит сторону AC пополам.
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.