Мы знаем что высота в равнобедренном триугольнике и медиана и бисектриса ПЕРВЫЙ Поскольку АD - медиано, то BD=CD\=5,6/2=2,8 см PΔABD=AB+BD+DA=8,1 см BD=2,8 см AD=2,3 см AB=AC=PΔABD-BD-AD=8,1-2,3-2,8=3 см PΔABC=AB+BC+AC AB=3 см AC=3 см BC=5,6 см PΔABC=3+3+5,6=11,6 см ВТОРОЙ AB=AC ∠B=∠C , поэтому ΔABD=ΔACD за первой ознакой, поэтому их BD=CD периметры тоже равны Итак PΔABD+PΔACD=8,1+8,1=16,2=AB+BC+AC+2AD, но PΔABC=AB+BC+AC=PΔABD+PΔACD-2AD=16,2-2*2,3=16,2-4,6=11,6 см
Выбирайте который легче и пользуютесь :):):):):):)
Пострим трапецию ABCD и проведем среднюю линию MN и диагональ АС. Точку пересечения средней линии и диагонали обозначим О. Для начала найдем среднюю линию: она равна полусумме оснований, т.е. MN=7. Средняя линия делит не только стороны трапеции пополам, но и диагональ трапеции так же делит пополам. Следовательно, мы можем рассмотреть два подобных треугольника ACD и OCN (по стороне и двум прилежащим углам, или по трем сторонам). В подобных треугольниках соответственные углы равны, а соответственные стороны равнопропорциональны. Т.е. AC/OC=DC/NC=AD/ON 2\1=2\1=10\ON откуда ON=5. Т.к. длина средней линии 7 см, то второй отрезок будет равен 7-5=2. Следовательно больший из отрезков, на которые среднюю линию делит диагональ трапеции - равен 5.
43 см
Объяснение:
Середня лінія трапеції дорівнює напівсумі основ, отже сума основ 16*2=32 см
Р=32+4+7=43 см.