1)Если все стороны треугольника касаются окружности, то окружность называется описанной около треугольника Верно 2)Центр окружности, описанной около произвольного треугольника, лежит в точке пересечения медиан Не верно 3)Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис треугольника Верно 4)В любой треугольник можно вписать окружность Верно 5)Центр окружности, описанной около прямоугольного треугольника, лежит в вершине прямого угла Не верно 6)Около любого треугольника можно описать окружность Верно 7)Центр описанной около произвольного треугольника окружности лежит в точке пересечения высот треугольника Не верно
пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Объяснение:
По теореме Пифагора сумма квадратов катетов равна квадрату гипотенузе отсюда