А
<АОВ=30°, як вертикальний до даного
АО=ОВ як радіуси, отже:
<ОАВ=<ОВА=(180°-30°):2=75°
Відповідь: <АОВ=30° <ОАВ=<ОВА=75°.
Б
АС_|_ОС=> <АСО=90°
<СОА=90°-40°=50°
<ВОС=180°-50°=130° як суміжний
ВО=ОС як радіуси=> ∆ВОС рівнобедрений=> <ОВС=<ВСО=(180°-130°):2=25°
ВІДПОВІДЬ: <ВОС=130°, <ОВС=<ВСО=25°.
В
Умовно проведемо пряму АВ, тоді:
∆АОВ рівнобедрений, бо АО=ВО, як радіуси=> <ОАВ<=ОВА=(180°-120°):2=30°
ОВ_|_ВС=> <САВ=90°-30°=60°
ОА_|_АС=> <СВА=90°-30°=60°
<АСВ=180°-60°×2=60°
ВІДПОВІДЬ: <АСВ=60°
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
60см²
Объяснение:
Площадь трапеции равна произведению средней линии на высоту.
Средняя линия трапеции равна половине суммы оснований.
S=10(8+4)/2=10*12/2=60см²