Объяснение:
1) Вектор 3a - b = 3•{ 5 ; 0 ;- 2 } - { 1 ; 2 ; 1 } = { 15 ; 0 ;- 6 } - { 1 ; 2 ; 1 } =
= { 14 ;- 2 ;- 7 } ; 3a - b = { 14 ;- 2 ;- 7 } .
2) Вектор 3a + 2b = 3•{ 2 ; 2 ; 1 } + 2•{ 3 ;- 2 ; 1 } = { 6 ; 6 ; 3 } +
+ { 6 ;- 4 ; 2 } = { 12 ; 2 ; 5 } ; 3a + 2b = { 12 ; 2 ; 5 } .
3) A( 1 ; 3 ;- 2 ) i B( 3 ; 4 ; 1 ) ; вектор АВ - ?
AB = { 3 - 1 ; 4 - 3 ; 1 + 2 } = { 2 ; 1 ; 3 } .
4) . . . .
Вектор d = a + b - c = { 1 ; 2 ; 3 } + {- 1 ; 2 ;- 3 } - { 5 ; 2 ;- 2 } =
= { 0 ; 4 ; 0 } - { 5 ; 2 ;- 2 } = {- 5 ; 2 ; 2 } ; d = {- 5 ; 2 ; 2 } ;
| d | = √[ (- 5 )² + 2² + 2² ] = √33 ; | d | = √33 .
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)
1)125.6
2)113.04
3)39.4384
4)1004.8