2х+3х+4х=180
х=20
при х=20:2х=40
ответ:40
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20).
Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30)
Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40)
Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)