Решение: Площадь треугольника находится по формуле: S=1/2*a*h В равнобедренном прямоугольном треугольнике a=h, поэтому площадь такого треугольника можно вычислить по формуле: S=1/2*a² Сторону (а) треугольника, которая является катетом можно найти из синуса угла. sinα=a/c где с- гипотенуза треугольника В равнобедренном прямоугольном треугольнике два острых угла равны по 45 град. (180град -90град=90град; 90град : 2=45 град) sin45=√2/2 или √2/2=а/14 а=14*√2/2=7√2 S=1/2*(7√2)²=1/2*49*2=98/2=49(cм²) Второй решения: Сторону а в равнобедренном прямоугольном треугольнике можно найти и по теореме Пифагора: с²=а²+а² с²=2а² а²=с²/2 а²=14²/2=196/2=98 S=1/2*a² или S=1/2*98-49(см²)
Правильный ответ: 90 градусов. Т.к. прямые параллельны, то сумма внутренних односторонних углов равна 180 градусов (назовём их целыми односторонними углами), а сумма односторонних углов, разбитых биссектрисами (нецелых односторонних углов), равна 180 / 2 = 90 (градусов). При пересечении биссектрис образуется треугольник, в котором два угла мы уже определили (они равны по 45 градусов каждый, т.к. 90 / 2 = 45). Осталось определить третий угол образовавшегося треугольника, т.е. угол между биссектрисами внутренних односторонних углов. Он равен: 180 - 90 = 90 (градусов).
7Х+5Х+6Х=360
18Х=360
Х=20
АВС=7Х=7*20=140
ВАС=5Х=5*20=100
АОВ=6Х=6*20=120