1) 25
2) 15,625
3)1,2
Объяснение:
1. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Т.к. стороны A₁ B₁ C₁ в 2 раза меньше сторон ABC, то коэффициент подобия равен 2, =>
(см²)
2) Пусть сторона большого куба равна , тогда по условию сторона меньшего куба равна
.
Объем большого куба: (см³)
Объем меньшего куба: (см³)
3) Матрешку можно рассматривать как цилиндр.
Формула массы цилиндра: - плотность материала,
- объем цилиндра.
Формула объема цилиндра: - радиус основания,
- высота цилиндра.
Если меньшая матрешка вдвое меньше большей, то делаем вывод что высота большей матрешки вдвое больше высоты меньшей матрешки, а также радиус основания большей матрешки вдвое больше радиуса основания меньшей матрешки.
Пусть - радиус основания меньшей матрешки,
- высота меньшей матрешки, тогда по формуле:
;
(г) = 1,2(кг)
Объяснение:
вы должны рассматривать высоту как катет прямоугольного треунольника. сначала начертите призму . проведите диагональное сечение . потом проведя диагональ самой призмы вы увидите что сечение разбивается на два прямоугольных треугольника .
ABCDA1B1C1D1 призма
BDB1D1 диагональное сечение
BD1 диагональ призмы.
по правилам прямоугольного треугольника если угол=30' то противоположный катет равен половине гипотенузы
по условию задачи гипотенуза это диагональ BD1
а катет равный половине гипотенузы это диагональ основания BD
в основание квадрат =>BD= 4V2 (V корень кв.)
BD1= 2*4V2=8V2
по теореме Пифагора DD1^2=(8V2)^2-(4V2)^2= 96
DD1=4V6
надеюсь правильно
Объяснение:
Радиус основания, образующая конуса и высота - прямоугольный треугольник где образующая - гипотенуза (6), катеты - радиус (2) и высота (х);
по т. Пифагора высота - √(6²-3²)=√27=3√3 ед.